Using KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease Volume 3 | Issue 1 | January 2013

eGFR(...)

# S3 method for data.frame
eGFR(
  .data,
  SCr = NULL,
  SCysC = NULL,
  Age = NULL,
  height = NULL,
  BUN = NULL,
  male = NULL,
  black = NULL,
  pediatric = NULL,
  ...
)

# S3 method for units
eGFR(
  SCr = NULL,
  SCysC = NULL,
  Age = NULL,
  height = NULL,
  BUN = NULL,
  male = NULL,
  black = NULL,
  pediatric = NULL,
  ...
)

# S3 method for numeric
eGFR(
  SCr = NULL,
  SCysC = NULL,
  Age = NULL,
  height = NULL,
  BUN = NULL,
  male = NULL,
  black = NULL,
  pediatric = NULL,
  ...
)

Arguments

...

Further optional arguments

.data

(data.frame) A data.frame, optional

SCr

Serum creatinine column name, or vector of units or numeric if .data is not provided

SCysC

Serum Cystatin C column name, or vector of units or numeric if .data is not provided

Age

Age of patient column name, or vector of units or numeric if .data is not provided

height

Height of patient column name, or vector of units or numeric if .data is not provided

BUN

Blood urea nitrogen column name, or vector of units or numeric if .data is not provided

male

Male or not column name, or vector of logical (TRUE/FALSE) if .data is not provided

black

Black race or not column name, or vector of logical (TRUE/FALSE) if .data is not provided

pediatric

(logical) Pediatric or not column name, or vector of logical (TRUE/FALSE) if .data is not provided

Value

(units) Estimated glomerular filtration rate (eGFR) of the same type provided (numeric or units in ml/min/1.73m2)

Details

Automatic selection of equation to estimation the Glomerular Filtration Rate (eGFR), based on input data

See https://kdigo.org/guidelines/ckd-evaluation-and-management/ for more details

Examples

eGFR(eGFR_pt_data,
  SCr = "SCr_", SCysC = "SCysC_",
  Age = "Age_", height = "height_", BUN = "BUN_",
  male = "male_", black = "black_", pediatric = "pediatric_"
)
#> Units: [mL/1.73m2/min]
#>  [1] 139.32466 161.68446 166.81886 150.52336 155.33226 171.35616 139.32466
#>  [8]  66.77365  96.41798 150.52336  64.15027  99.04045  49.63420 161.68446
#> [15]  97.06854  53.62373 155.33226  99.70870  49.63420  66.77365  56.10368
#> [22]  53.62373  64.15027  57.62964 155.99874 173.48118 178.86404 168.53768
#> [29] 166.66552 183.72895 155.99874  71.64555 103.37985 168.53768  68.83077
#> [36] 106.19167  66.06766 173.48118 116.50660  71.37808 166.66552 119.67546
#> [43]  66.06766  71.64555  67.33849  71.37808  68.83077  69.17003  99.12000
#> [50] 148.21219 165.89761

eGFR_pt_data %>%
  dplyr::mutate(eGFR = eGFR(
    SCr = SCr_, SCysC = SCysC_,
    Age = Age_, height = height_, BUN = BUN_,
    male = male_, black = black_, pediatric = pediatric_
  ))
#> # A tibble: 51 × 11
#>       SCr_ SCysC_    Age_ male_ black_ height_    BUN_ eGFR_calc_type_     eGFR_
#>    [mg/dl] [mg/L] [years] <lgl> <lgl>      [m] [mg/dl] <chr>               [mL/
#>  1     0.5   NA        20 FALSE FALSE       NA      NA eGFR_adult_SCr      139. 
#>  2    NA      0.4      20 FALSE FALSE       NA      NA eGFR_adult_SCysC    162. 
#>  3     0.5    0.4      20 FALSE FALSE       NA      NA eGFR_adult_SCr_SCy… 167. 
#>  4     0.5   NA        30 FALSE TRUE        NA      NA eGFR_adult_SCr      150. 
#>  5    NA      0.4      30 FALSE TRUE        NA      NA eGFR_adult_SCysC    155. 
#>  6     0.5    0.4      30 FALSE TRUE        NA      NA eGFR_adult_SCr_SCy… 171. 
#>  7     0.5   NA        20 FALSE FALSE       NA      NA eGFR_adult_SCr      139. 
#>  8    NA      1.2      20 FALSE FALSE       NA      NA eGFR_adult_SCysC     66.8
#>  9     0.5    1.2      20 FALSE FALSE       NA      NA eGFR_adult_SCr_SCy…  96.4
#> 10     0.5   NA        30 FALSE TRUE        NA      NA eGFR_adult_SCr      150. 
#> # ℹ 41 more rows
#> # ℹ 2 more variables: pediatric_ <lgl>, eGFR [mL/1.73m2/min]