Using KDIGO Clinical Practice Guideline for Acute Kidney Injury Volume 2 | Issue 1 | March 2012
aki_staging(...)
# S3 method for data.frame
aki_staging(
.data,
SCr = NULL,
bCr = NULL,
UO = NULL,
dttm = NULL,
pt_id = NULL,
...
)
# S3 method for units
aki_staging(SCr = NULL, bCr = NULL, UO = NULL, dttm = NULL, pt_id = NULL, ...)
# S3 method for numeric
aki_staging(SCr = NULL, bCr = NULL, UO = NULL, dttm = NULL, pt_id = NULL, ...)
Further optional arguments
(data.frame) A data.frame, optional
Serum creatinine
column name, or vector of units or numeric if .data
is not provided
Baseline creatinine
column name, or vector of units or numeric if .data
is not provided
Urine output
column name, or vector of units or numeric if .data
is not provided
DateTime
column name, or vector of POSIXct if .data
is not provided
Patient ID
column name, or vector of characters or factors if .data
is not provided
(ordered factor) AKI stages
Provided a baseline creatinine, series of Serum Creatinine readings and/or
Urine Output, aki_staging()
calculates whether or not a patient has AKI.
The staging (1, 2, 3) of AKI is returned.
When multiple columns are provided, aki_staging()
will automatically
calculate whether or not AKI has occurred using each KDIGO definition.
aki_bCr()
: Staging of AKI based on baseline serum creatinine
aki_SCr()
: Staging of AKI based on changes in serum creatinine
aki_UO()
: Staging of AKI based on urine output
The most severe AKI stage is then returned.
See https://kdigo.org/guidelines/acute-kidney-injury/ for more details.
aki_staging(aki_pt_data, SCr = "SCr_", bCr = "bCr_", UO = "UO_", dttm = "dttm_", pt_id = "pt_id_")
#> [1] No AKI AKI Stage 1 AKI Stage 2 AKI Stage 2 AKI Stage 3 AKI Stage 3
#> [7] No AKI No AKI AKI Stage 1 No AKI No AKI AKI Stage 1
#> [13] No AKI No AKI No AKI AKI Stage 1 No AKI AKI Stage 2
#> [19] AKI Stage 3 AKI Stage 1 AKI Stage 3 AKI Stage 2 No AKI AKI Stage 1
#> [25] AKI Stage 3 AKI Stage 3 No AKI
#> Levels: No AKI < AKI Stage 1 < AKI Stage 2 < AKI Stage 3
aki_pt_data %>%
dplyr::mutate(aki = aki_staging(SCr = SCr_, bCr = bCr_, UO = UO_, dttm = dttm_, pt_id = pt_id_))
#> # A tibble: 27 × 8
#> SCr_ bCr_ pt_id_ dttm_ UO_ aki_staging_type aki_ aki
#> [mg/dl] [mg/dl] <chr> <dttm> [ml/… <chr> <ord> <ord>
#> 1 2 1.5 NA NA NA aki_bCr No A… No A…
#> 2 2.5 1.5 NA NA NA aki_bCr AKI … AKI …
#> 3 3 1.5 NA NA NA aki_bCr AKI … AKI …
#> 4 3.5 1.5 NA NA NA aki_bCr AKI … AKI …
#> 5 4 1.5 NA NA NA aki_bCr AKI … AKI …
#> 6 4.5 1.5 NA NA NA aki_bCr AKI … AKI …
#> 7 3.4 NA pt1 2020-10-23 09:00:00 NA aki_SCr No A… No A…
#> 8 3.9 NA pt1 2020-10-25 21:00:00 NA aki_SCr No A… No A…
#> 9 3 NA pt1 2020-10-20 09:00:00 NA aki_SCr AKI … AKI …
#> 10 3.4 NA pt2 2020-10-18 22:00:00 NA aki_SCr No A… No A…
#> # ℹ 17 more rows