Using KDIGO Clinical Practice Guideline for Acute Kidney Injury Volume 2 | Issue 1 | March 2012
Usage
aki_staging(...)
# S3 method for class 'data.frame'
aki_staging(
.data,
SCr = NULL,
bCr = NULL,
UO = NULL,
dttm = NULL,
pt_id = NULL,
...
)
# S3 method for class 'units'
aki_staging(SCr = NULL, bCr = NULL, UO = NULL, dttm = NULL, pt_id = NULL, ...)
# S3 method for class 'numeric'
aki_staging(SCr = NULL, bCr = NULL, UO = NULL, dttm = NULL, pt_id = NULL, ...)Arguments
- ...
Further optional arguments
- .data
(data.frame) A data.frame, optional
- SCr
Serum creatinine column name, or vector of units or numeric if
.datais not provided- bCr
Baseline creatinine column name, or vector of units or numeric if
.datais not provided- UO
Urine output column name, or vector of units or numeric if
.datais not provided- dttm
DateTime column name, or vector of POSIXct if
.datais not provided- pt_id
Patient ID column name, or vector of characters or factors if
.datais not provided
Details
Provided a baseline creatinine, series of Serum Creatinine readings and/or
Urine Output, aki_staging() calculates whether or not a patient has AKI.
The staging (1, 2, 3) of AKI is returned.
When multiple columns are provided, aki_staging() will automatically
calculate whether or not AKI has occurred using each KDIGO definition.
aki_bCr(): Staging of AKI based on baseline serum creatinineaki_SCr(): Staging of AKI based on changes in serum creatinineaki_UO(): Staging of AKI based on urine output
The most severe AKI stage is then returned.
See https://kdigo.org/guidelines/acute-kidney-injury/ for more details.
Examples
aki_staging(aki_pt_data, SCr = "SCr_", bCr = "bCr_", UO = "UO_", dttm = "dttm_", pt_id = "pt_id_")
#> [1] No AKI AKI Stage 1 AKI Stage 2 AKI Stage 2 AKI Stage 3 AKI Stage 3
#> [7] No AKI No AKI AKI Stage 1 No AKI No AKI AKI Stage 1
#> [13] No AKI No AKI No AKI AKI Stage 1 No AKI AKI Stage 2
#> [19] AKI Stage 3 AKI Stage 1 AKI Stage 3 AKI Stage 2 No AKI AKI Stage 1
#> [25] AKI Stage 3 AKI Stage 3 No AKI
#> Levels: No AKI < AKI Stage 1 < AKI Stage 2 < AKI Stage 3
aki_pt_data %>%
dplyr::mutate(aki = aki_staging(SCr = SCr_, bCr = bCr_, UO = UO_, dttm = dttm_, pt_id = pt_id_))
#> # A tibble: 27 × 8
#> SCr_ bCr_ pt_id_ dttm_ UO_ aki_staging_type aki_ aki
#> [mg/dl] [mg/dl] <chr> <dttm> [ml/… <chr> <ord> <ord>
#> 1 2 1.5 NA NA NA aki_bCr No A… No A…
#> 2 2.5 1.5 NA NA NA aki_bCr AKI … AKI …
#> 3 3 1.5 NA NA NA aki_bCr AKI … AKI …
#> 4 3.5 1.5 NA NA NA aki_bCr AKI … AKI …
#> 5 4 1.5 NA NA NA aki_bCr AKI … AKI …
#> 6 4.5 1.5 NA NA NA aki_bCr AKI … AKI …
#> 7 3.4 NA pt1 2020-10-23 09:00:00 NA aki_SCr No A… No A…
#> 8 3.9 NA pt1 2020-10-25 21:00:00 NA aki_SCr No A… No A…
#> 9 3 NA pt1 2020-10-20 09:00:00 NA aki_SCr AKI … AKI …
#> 10 3.4 NA pt2 2020-10-18 22:00:00 NA aki_SCr No A… No A…
#> # ℹ 17 more rows